• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

The Programming Expert

Solving All of Your Programming Headaches

  • HTML
  • JavaScript
  • jQuery
  • PHP
  • Python
  • SAS
  • VBA
  • About
You are here: Home / Python / Python atan – Find Arctangent and Inverse Tangent of Number

Python atan – Find Arctangent and Inverse Tangent of Number

January 26, 2022 Leave a Comment

To find the arctangent, or inverse tangent, of a number, we can use the Python atan() function from the math module.

import math

math.atan(x)

In Python, we can easily use trigonometric functions with the Python math module. The Python math module allows us to perform trigonometry easily.

With the Python math module, we can find the arctangent of a number easily.

To find the arctangent of a number, we use the math atan() function.

Below is the Python syntax to find the inverse tangent of a number.

import math

math.atan(x)

The input to the atan() function must be a numeric value. The return value will be a numeric value between -pi/2 and pi/2 radians.

import math

print(math.atan(5))
print(math.atan(0))
print(math.atan(-3))

#Output: 
1.373400766945016
0.0
-1.2490457723982544

Finding the Inverse Tangent of a Number in Python

The atan() function is defined as the inverse of the tangent of a number.

Below, we show that if we pass a number to tan() and then call the Python atan() function, we get back the same number.

import math

print(math.atan(math.tan(math.pi/3)))
print(math.pi/3)

#Output: 
1.0471975511965976
1.0471975511965976

Find Arc Tangent of the Quotient of Two Arguments with atan2() in Python

Python gives us the ability to find the arctangent of the quotient of two numbers, where the two numbers represents the coordinates of a point (x,y). To find the arctangent of a the quotient of two numbers, we use the math atan2() function.

Below is the Python syntax to find the inverse tangent of the quotient of two numbers.

import math

math.atan2(x)

The inputs to the atan2() function must be a numeric values. The return value will be a numeric value between -pi and pi.

import math

print(math.atan2(5,1))
print(math.atan2(0,0))
print(math.atan2(-3,7))

#Output: 
1.373400766945016
0.0
-0.40489178628508343

Hopefully this article has been beneficial for you to understand how to use the math atan() function in Python to find the arctangent of a number.

Other Articles You'll Also Like:

  • 1.  Using Python to Repeat Characters in String
  • 2.  pandas ewm – Calculate Exponentially Weighted Statistics in DataFrame
  • 3.  How to Group and Aggregate By Multiple Columns in Pandas
  • 4.  Sort a List of Strings Using Python
  • 5.  Scroll Up Using Selenium in Python
  • 6.  Why Dictionaries Can’t Have Duplicate Keys in Python
  • 7.  Read First Line of File Using Python
  • 8.  Python max float – What’s the Maximum Float Value in Python?
  • 9.  Using Python to Capitalize Every Other Letter of String
  • 10.  How to Check if Number is Divisible by 3 in Python

About The Programming Expert

The Programming Expert is a compilation of a programmer’s findings in the world of software development, website creation, and automation of processes.

Programming allows us to create amazing applications which make our work more efficient, repeatable and accurate.

At the end of the day, we want to be able to just push a button and let the code do it’s magic.

You can read more about us on our about page.

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

About The Programming Expert

the programming expert main image

The Programming Expert is a compilation of hundreds of code snippets to help you find solutions to your problems in Python, JavaScript, PHP, HTML, SAS, and more.

Search

Learn Coding from Experts on Udemy

Looking to boost your skills and learn how to become a programming expert?

Check out the links below to view Udemy courses for learning to program in the following languages:

Copyright © 2022 · The Programming Expert · About · Privacy Policy